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ABSTRACT

A geomorphic assessment of the Middle Fork John Day Watershed, Oregon, USA, was used to
generate a hierarchical, map-based understanding of watershed impairments and potential
opportunities for improvements. Specifically, we (1) assessed river diversity (character and
behavior) and patterns of reach types (and their controls); (2) evaluated the geomorphic
condition of the streams; (3) interpreted their geomorphic recovery potential; and (4)
synthesized the above into a hypothetical, strategic management plan. Collectively, these
maps can set bounds and provide realistic guidance for river rehabilitation, design and
implementation efforts. Fifteen distinct reach types were identified, two-thirds of which are
found along perennial streams. On the basis of a variety of geo-indicators, approximately
two-thirds of all perennial stream reaches were found to be in ‘good’ geomorphic condition,
whereas one-third had departed to ‘moderate’ and ‘poor’ condition. Departures from ‘good’
condition were primarily related to riparian vegetation removal, conversion of floodplain to
agricultural land uses (farming and grazing), logging, and channel bed dredge mining for
gold. Encouragingly, the majority of reaches classified as being in moderate geomorphic
condition were found to have high recovery potential. While our geomorphic assessment has
practical utility for informing physically realistic expectation management for efforts like
salmonid habitat restoration, the maps themselves are the key vehicle for communicating
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and visualizing among stakeholders.

1. Introduction

Geomorphic mapping of channel patterns and reach
types over entire drainage networks sets the stage for
restoration and conservation planning (Beechie &
Imaki, 2014). In particular, efforts to recover threa-
tened and endangered populations of anadromous sal-
mon (Oncorhynchus spp.) and steelhead (O. mykiss)
across the U.S. Pacific Northwest rely heavily on
stream restoration intended to mitigate or reverse
human impacts (Montgomery, 2004). Those impacts,
commonly referred to as the four H’s — hatchery prac-
tices, hydropower dams, harvest, and habitat loss/
degradation — have spurred intense efforts to quantify
the status and trends of fish populations (and their
habitats), as well as to identify management actions
that might improve population viability (Mann &
Plummer, 2000; Rucklehaus, Levin, Johnson, & Kar-
eiva, 2002; Wheaton et al., 2017). Within the Interior
Columbia Basin in particular (see Plate 1), biological
opinions issued by the National Marine Fisheries Ser-
vice (NMEFS), under the National Oceanic and Atmos-
pheric Administration (NOAA), developed population

recovery plans that lean heavily on tributary habitat
restoration (NMFS, 2008). Accordingly, a myriad of
river restoration efforts have been implemented across
subwatersheds (e.g. Holburn, Piety, Lyon, McAffee, &
Callahan, 2008; Reclamation, 2010). Many of these
interventions are opportunistic, pursued at a reach
scale without knowledge of the watershed context of
geomorphic condition and recovery potential. As a
consequence, they may not produce the desired overall
fish population response because they do not strategi-
cally target key limiting factors, connections between
and across isolated reaches, or address the root causes
of degradation at the appropriate scale (Bennett et al.,
2016). Moreover, many restoration efforts have the
best of intentions, but fail to produce physically realis-
tic goals for the streams they are intended to improve.
Restoration efforts can benefit greatly from geo-
morphic assessments that recognize the importance
of the watershed-scale context when evaluating indi-
vidual stream reach conditions (Beechie et al., 2010;
Beechie, Pess, Roni, & Giannico, 2008; Demarchi,
Bizzi, & Piégay, 2016). The resulting network-scale

CONTACT Gary R. O'Brien @ grobrien@gmail.com e Department of Watershed Sciences, Utah State University, Logan, UT 84322, USA

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://crossmark.crossref.org/dialog/?doi=10.1080/17445647.2017.1313787&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:grobrien@gmail.com
http://www.tandfonline.com/loi/tjom20
http://www.tandfonline.com

370 e G.R.O'BRIEN ET AL.

maps (i.e. reach resolution and watershed extent over
the drainage network) represent the most concise
way to distill and communicate the end products of
such a geomorphic assessment in a way that can
directly support watershed management (Wheaton
et al,, 2017).

Through geomorphic assessment, the rivers and
streams that comprise a drainage network of a water-
shed can be broken into distinctive reaches and similar
reach types grouped together (Buftington & Montgom-
ery, 2013; Kasprak et al., 2016). Landscape units, lithol-
ogy and rock strength, stream power and drainage
basin area are all important controls on river character
and behavior (Church, 1992; Schumm, 1977). Inter-
actions among these factors shape channels and their
floodplains forming reaches of relatively distinctive
structure and function (Buffington & Montgomery,
2013; Kellerhals, Church, & Bray, 1976). A reach
break is the physical transition between different adja-
cent reach types with characteristic valley setting, plan-
form, bed material, and geomorphic unit assemblages.
In this study, such process-based reach types are
synonymous with distinct river styles (cf. Brierley &
Fryirs, 2005). Valley confinement is a key driver of
reach breaks throughout a watershed (e.g. Fryirs,
Wheaton, & Brierley, 2016a; Montgomery & Buffing-
ton, 1997) (see Plate 3). The degree of confinement
controls the ability of a channel to adjust laterally
and, to some extent, vertically on the valley bottom.
Measures of confinement are used to differentiate val-
ley settings (Brierley & Fryirs, 2005; Fryirs et al,
2016a).

The geomorphology of river channels and their
floodplains is key to understanding the processes that
create and maintain habitat conditions suitable for sal-
monid species (Beechie & Sibley, 1997; Gilbert, Macfar-
lane, & Wheaton, 2016; Wheaton et al., 2010). An
analysis of a river’s current geomorphic condition
and its recovery potential not only informs potential
restoration targets and priorities, it can also support
assessments of salmonid-habitat relationships at a var-
iety of spatial scales (e.g. ISEMP/CHaMP, 2015). Hier-
archical geomorphic assessments provide insight that
can enhance the success and cost-effectiveness of
ongoing salmonid habitat restoration efforts (Bennett
et al., 2016). Salmonids implicitly ‘consider’ geo-
morphic features at multiple levels of a geomorphic
hierarchy when selecting/using habitats (Fausch, Tor-
gersen, Baxter, & Li, 2002). Ideal spawning locations
for bull trout (Salvelinus confluentus), for example,
are characterized by both a particular in-channel geo-
morphic unit assemblage (i.e. pool-riffle transitions)
and specific valley setting (i.e. unconfined alluvial val-
leys (Baxter & Hauer, 2000; Bean, Wilcox, Woessner, &
Muhlfeld, 2014)). In a case such as this, restoration pri-
orities set by in-channel features alone are likely to be
misleading. Further, a watershed-scale perspective on

the abundance and spatial arrangement of particular
reach types — some of which may be rare but critical
to particular species and/or life stages — is needed to
understand the overall feasibility of watersheds to sup-
port robust and resilient fish populations (Fausch et al.,
2002; Rosenfeld & Hatfield, 2006). Yet, fish population
and habitat assessments have historically neglected this
critical multi-scale view (Fausch et al., 2002). This hier-
archical perspective of riverine habitat also helps res-
toration practitioners avoid some of the costly
mistakes of the past. For instance, the U.S. Pacific
Northwest is replete with examples of large wood pla-
cement projects that aimed to enhance salmonid habi-
tat but failed due to a lack of consideration of local
geomorphic conditions and watershed hydrology (e.g.
Frissell & Nawa, 1992). By formally considering a
reach’s natural behavior, trajectory, and capacity for
adjustment, such assessments can help restoration
practitioners to ‘work with nature’ (Brierley, Fryirs,
Outhet, & Massey, 2002) leading to longer lasting
and more appropriately sited restoration treatments.

This purpose of this paper and the associated maps
is to illustrate a practical application of a multiscalar
geomorphic assessment framework that can aid in
planning and prioritization of ecological restoration
and management. The Main Map embodying the
assessment is packaged as an atlas. The atlas supports
building realistic expectations for watershed managers
and stakeholders to constrain management actions
based on a sound understanding of watershed-scale
processes. Specifically, links between the physical
environment and aquatic ecosystems, support efforts
to move beyond site or reach-specific management
applications to procedures that work with watershed-
specific process relationships. This is especially impor-
tant for fish protection (Fausch et al., 2002). We use the
Middle Fork John Day Watershed in Oregon, USA as a
case study.

2, Study watershed

The Middle Fork John Day (hereafter MFJD) Water-
shed, northeast Oregon, USA, is home to populations
of summer steelhead listed under the Endangered
Species Act and at-risk Chinook salmon (Oncor-
hynchus tshawytscha) and has been the focus of numer-
ous studies, which make it an excellent candidate for
illustrating the potential utility of the River Styles Fra-
mework. The MFJD River has been the focus of mul-
tiple previous geomorphic investigations (e.g.
Butcher, Crown, Brannan, Kishida, & Hubler, 2010;
Dietrich, 2014, 2016; McDowell, 2001; Reclamation,
2008; Torgersen, Price, Li, & McIntosh, 1999). Kasprak
et al. (2016) used the MFJD to compare and contrast
different reach typing (stream channel classification)
frameworks (including river styles). The MFJD has
been the subject of stream temperature thermal fish


http://dx.doi.org/10.1080/17445647.2017.1313787

habitat studies (e.g. Feldhaus, Heppell, Hiram, & Mesa,
2010; McNyset, Volk, & Jordan, 2015; Torgersen et al.,
1999), continuous fish surveys and habitat assessments
(e.g. Blanchard, 2015), site-scale bioenergetic ecohy-
draulic modeling (Wall, Bouwes, Wheaton, Saunders,
& Bennett, 2015), and salmonid life cycle modeling
(McHugh et al,, in press). In addition to fish studies,
the MFJD has been the focus of research on freshwater
mussels (e.g. Box et al, 2006; Hegeman, Miller, &
Mock, 2014; Mock et al., 2010) that have shed new
light on what sort of habitats these species prefer.
The MFJD Watershed is also an Intensively Monitored
Watershed (Bennett et al., 2016) in which extensive
restoration is being coordinated (Holburn, Turner,
Piety, & Klinger, 2009; Reclamation, 2008) in an effort
to understand how specific actions influence fish and
their habitat (i.e. determine if restoration is effective
at increasing the populations). In addition, habitat sta-
tus and trend monitoring is conducted through the
Columbia Habitat and Monitoring Program
[CHaMP] (2012). While not the focus of this paper,
collectively these past studies in the MFJD provide an
excellent backdrop in which the maps presented here
can help shed new light and context for.

We conducted a hierarchical geomorphic assess-
ment using Brierley and Fryirs (2005) in the MFJD
Watershed to inform ongoing and future research
and restoration planning efforts. This framework
organizes traditional geomorphic assessment in terms
of four stages: (1) river classification (i.e. reach typing);
(2) geomorphic condition assessment; (3) recovery
potential analysis; and (4) development of a strategic
management plan to address potential restoration
and rehabilitation goals. Analyses are ‘nested’ across
spatial scales of watersheds, landscape units, river
reaches, and geomorphic units (landforms) (Figure 1).
Initially, morphometric, hypsometric, and geomorphic
analyses are required to characterize river character,
behavior and patterns at the watershed scale (summar-
ized as reach types). An understanding of current and
historic geomorphic processes along with human per-
turbation influences are used to assess condition and
forecast recovery potential as part of developing a stra-
tegic river management plan (White, Justice, Kelsey,
McCullough, & Smith¥, 2017).

The MFJD Watershed is a 2050 km? subwatershed
of the Columbia River Basin located in east-central
Oregon (see Plate 1). The MFJD River flows northwes-
terly from headwaters on the western flank of the Blue
Mountains, a rugged series of ranges in northeastern
Oregon. The John Day Basin lies in the rain shadow
of the Cascade Range (mean annual precipitation
= ~35-56 cm; temperature range =—10°C to 5°C in
winter and 10-30°C in summer) and is underlain by
Cretaceous volcanic, marine sedimentary, and granitic
rocks overlain by the Miocene Picture Gorge Basalt of
the Columbia River Basalt Group (e.g. Walker &
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MacLeod, 1991). The basin has a semi-arid climate
across upland landscapes, but is locally diverse, ranging
from alpine and forested mountains to grass- and
scrublands of the adjacent foothills and low-relief, tem-
perate steppe uplands. Vegetation communities are
stratified along moisture and elevation gradients
between mesic highland, mixed spruce and subalpine
fir forests, and sage grasslands of the upland and table-
land environments.

The MFJD Watershed consists of five Hydrologic
Unit Code 10 (HUC) subwatersheds (Seaber, Kapinos,
& Knapp, 1987) that join the 131-km long central
trunk stream of the MFJD River. The topography con-
tains a high-relief stream network with high drainage
density, marked by steep-sloped canyons, deeply dis-
sected highlands, broad tablelands, and rounded
uplands replete with broad meadows. We identified
and mapped six ‘landscape units’ that range from
high elevation, moist alpine terrain in the south and
east, to semi-arid volcanic tablelands to the northwest
(Plate 2).

3. Mapping data and methods

The methods used to implement the geomorphic
assessment are well documented in Brierley and Fryirs
(2005; i.e. the River Styles Framework) and summar-
ized in Figure 1. Here we focus more on describing
the specifics of how we implemented that framework
within the Middle Fork John Day to produce the
maps presented here.

3.1. Desktop analyses and stream survey

The bulk of the desktop analysis and field-based vali-
dation work is centered on the regional landscape
and watershed investigations essential to the stream
classification exercise. To aid in our desktop analysis,
we used Google Earth Pro (v.7.1.2.2041, 2013) and
other geographic information system (GIS) readable
imagery, in conjunction with the National Elevation
Dataset (NED; USGS, 1999) and National Hydrogra-
phy Dataset (NHD; USGS, 2007), to document the
landscape-scale physiographic attributes such as
underlying geology, vegetation patterns and compo-
sition, relief, drainage density and a thorough visual
interpretation of stream and valley attributes. Air
photo analysis is critical for validating preliminary
mapping of the valley bottom (Gilbert et al., 2016),
channel, and where aerial photo resolution allows, for
bed material inference and in-channel geomorphic
units. Determining reach breaks (e.g. Buffington &
Montgomery, 2013; Wohl & Merritt, 2008) is the single
most important analytical step in developing network-
based maps comprising multiple variables (e.g. stream
classification, geomorphic condition, recovery poten-
tial, and prioritized management classes) (Table 1).
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*see plates 4-7 in accompanying atlas
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network®

reach*

A .
>

geomorphic unit®

Figure 1. Products produced when undertaking a River Styles geomorphic assessment noting the examples that are included in this
paper. Superscripts note the hierarchical scale at which the analysis is undertaken.

Reach breaks are identified through changes in valley
setting and associated channel confinement (Fryirs,
Wheaton, & Brierley, 2016b), river planform, the
assemblage of geomorphic units (i.e. floodplain and
channel landforms; cf. Notebaert & Piégay, 2013;

Wheaton et al., 2015) and bed material texture. We
validated our remotely sensed interpretations with
field visits to representative reach type localities to
map valley slope, floodplain and in-channel geo-
morphic units for each unique reach type (i.e. ‘River

Table 1. Categorical levels used for the network stream line attributes in each classification and status map (see Plates 4-7 of the

atlas).

River classification map

River styles

Watershed status maps

Geomorphic condition

Recovery potential

Prioritized management

Reach breaks
Valley setting
Confined

Partly confined

Intact
Good
Moderate

Laterally unconfined
Planform (sinuosity)

Low
Medium
High

Floodplain geomorphic units
Instream geomorphic units
Bed material texture
Structural elements

Poor

Intact
High
Moderate
Low

Conservation reach

Strategic reach

Connected reach with high recovery potential
Isolated reach with high recovery potential
Moderate recovery potential

Low recovery potential

Note: Floodplain and instream geomorphic units and structural elements comprise a large set of possible taxonomic units (see Wheaton et al., 2015 for
details). Bed material texture is based on the grain size classification scheme of Buffington and Montgomery (1999).



Style’; e.g. see Plate 3). The field-based ground-truth-
ing, mapping, and data collection efforts are critical
for extrapolating channel classes throughout the
study watershed.

Longitudinal profile plots provide a key tool for
understanding and interpreting the downstream pat-
terns of rivers in each watershed, and controls that gov-
ern their form and function. This data display allows for
efficient analysis of downstream variations in types of
landscape units (and sediment process zones), upstream
watershed area, slope, total stream power and their
relationships to valley confinement and reach type
(Figure 2). Longitudinal profiles were constructed
using the National Hydrography Dataset version 1
(1:24,000) and WBD layers to derive upstream water-
shed area from an integrated flow accumulation raster
derived from a 10 m digital elevation model (DEM).
To extract longitudinal profiles, we segmented the
streamlines into 100 m reach segments for which we cal-
culated upstream watershed area and reach slope. For
this operation we used the Geospatial Modeling
Environment (GME) tool (Beyer, 2012).

Total stream power, a measure of the capability of a
river to do work (i.e. rework and transport sediment)
against the bed and banks of the river channel per
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unit downstream length (e.g. Worthy, 2005), was calcu-
lated for each 100 m interval:

Q = pgQs,

where p is the density of water, g is acceleration due to
gravity, Q is a characteristic discharge, S is the chan-
nel slope, and Q is stream power in Watts. We used a
two-year recurrence interval flow for discharge (Q,),
given the effectiveness of frequent bankfull flows in
modifying and maintaining channel form relative
to larger magnitude, infrequent flood stage flows
(Wolman & Miller, 1960). To estimate Q for the
Middle Fork John Day River, a regional regression
equation was obtained from the United States Geo-
logical Survey (USGS) National Streamflow Statistics
Website (URL: http://water.usgs.gov/osw/programs/
nss/pubs.html) and we used the National Stream-
flow Statistics Program (Ries, 2006) to compute an
area-discharge relationship between Q, and drainage
area. The relationship was verified by calculating
a linear regression based on seven gauges in the
John Day basin, including the Middle Fork, and
regional gauge data from northeastern Oregon
(Harris & Hubbard, 1982; Kasprak & Wheaton,
2012). Streamflow data of flood recurrence and flow

2500 - ——  Confined valley boulder bed (CV-BB) e'et":“"” : ~ 60000
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\E, B ——— Meandering planform controlled discontinuous floodplain (M-PC-DFP) Long Creek E'""
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|
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Figure 2. Controls on channel morphology and downstream patterns of reach types on the Middle Fork John Day River and Squaw

Creek.
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duration analyses were obtained from the USGS
streamflow website for Oregon (URL: http://or.
water.usgs.gov/). The Log-Pearson III analysis of
peak discharge data was performed using the
methods outlined by Klingeman, Bogavelli, Coles,
and Wright (2002) (see Plate 3).

3.2. Building the network-based classification
and status maps

The network-based status maps display results of land-
scape units, river type, geomorphic condition, recovery
potential, and prioritized strategic plan analyses. The
atlas maps (see Plates 1-7) were built in Esri ArcMap
using the 1:24,000 NHD version 1 (USGS, 2007) as
the baseline network for delineating reach breaks and
other variables on maps. This cartographically derived,
digital vector dataset closely matches the actual course
of the river visible in air photos. Line segments of inter-
est were assigned the appropriate categorical variables.
For example, segments denoting river classifications
begin and end at geomorphic reach breaks. In addition,
segments are categorized according to their

geomorphic condition, recovery potential and priori-
tized management (Table 1). Stream length and valley
confinement proportions were summarized for the
whole MFJD Watershed and its five subwatersheds
(Figure 4). We used NED 30 m raster DEMs to extract
elevation data and hillshade images, clipped to hydro-
logic unit codes (HUC) 8 and 10 watershed boundaries.
Stream length statistics for each analysis were gener-
ated in ArcMap and exported to Microsoft Excel for
processing. The completed raster and vector data
were exported to Adobe Illustrator for rendering of
maps and summary figures.

4. Map guides and discussion

4.1. Stream classification (river character and
behavior)

Fifteen different reach types were identified, spanning
the range of confined, partly confined, and laterally
unconfined valley settings found within the MFJD
Watershed (see Plates 1 and 4). This included both per-
ennial and ephemeral streams. Stream attributes lead-
ing to the classification are listed in organizational

valley setting

’ Partly confined valley setting ‘

margin-controlled discontinuous floodplan
50-90% contact with confining margin

|

presence/
extent of floodplain

|
planform-controlled discontinuous floodplain
10-50% contact with confining margin

I 1

planform low-moderate medium-high sinuosity
sinuosity active meandering
>60-90% confined >30-50% confined
\ |
floodplain terrace, anabranch, terrace, alluvial fan,

geomorphic units

instream
geomorphic Units

bed material texture

structural elements*

river style

*BA = bank-attached
CS = channel spanning

meander cutoff,
paleochannels

riffles, pools, runs,
point bars, scroll bars,
islands, chute cutoffs,
restoration structures

cobble, gravel
sand (sgC)

\
BA woody debris

\
MARGIN-CONTROLLED

FLOODPLAIN
\

meander cutoff

pools, riffles,
runs, point bars,
cutbanks

cobble, gravel
silt, sand (zgC)

CS and BA woody debris,
restoration structure

MEANDERING PLANFORM-
ELONGATE DISCONTINUOUS CONTROLLED DISCONTINUOUS

FLOODPLAIN

moderate-low sinuosity
active meandering

>60-90% confined

fine grained
irregular shaped floodplain

woody debris-forced bars,
compound, mid-channel,
point, and diagonal bars
runs, cutbanks,
chute cutoffs

cobble, gravel
(gC)
\

CS and BA woody debris
woody debris-forced bars

LOW-MODERATE SINUOSITY

PLANFORM-CONTROLLED

DISCONTINUOUS FLOODPLAIN

low-moderate
sinuosity

~50% confined

terrace,
paleochannel,
paleocutbanks,
alluvial/debris fan

bank-attached and
mid-channel
gravel bars, riffles,
pools, rapids, runs,
cutbank, bench

I
boulder, cobble,
gravel (gcB)

|
CS woody debris

LOW SINUOSITY
PLANFORM-CONTROLLED
ANABRANCHING
|

Figure 3. Example River Styles tree for Middle Fork John Day Watershed streams in the partly confined valley setting. This tree
documents the key attributes of these reach types and is ordered in a hierarchical fashion. River Styles trees were also completed
for streams of confined, and laterally unconfined valley settings but are not shown here (see O'Brien & Wheaton, 2015).
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Figure 4. Summary distribution of reach types (River Styles) of perennial stream in terms of stream length and valley confinement.
For information that includes the ephemeral stream network, see Plate 4 of the atlas (supplemental material).

trees that include explicit, objective, and/or quantitat-
ive criteria (Figure 3). We summarized the frequency
of stream length by river classes and valley settings
for five HUC 10 subwatersheds (Figure 4). These
data are critical for understanding the partitioned
nature of the watershed and to track attributes that
are helpful for a variety of geomorphic and habitat-
related analyses. For example, Figure 4 summarizes
stream length data for the 962 km perennial network,
which is used by anadromous fish, whereas Plate 1
shows the equivalent mapping for the entire 4110 km
perennial, ephemeral, and intermittent drainage net-
work. This provides insight into geomorphic par-
ameters that may be directly relevant to fish and their
habitat or indirectly through their more sporadic

contributions of water, wood, and sediment to the per-
ennial network from upstream tributaries. Since Plate 4
summarizes the same numbers for the entire perennial,
intermittent, and ephemeral drainage network, it may
be more appropriate to informing a holistic watershed
management approach as opposed to just fish-centric
management activities. For those interested in how
the River Styles classification reported here compares
to that of other common classification systems, the
reader is referred to Buffington and Montgomery
(2013) and Kasprak et al. (2016). This latter paper
includes a comparison specific to the MFJD
Watershed.

For each representative downstream pattern of
River Styles, O’Brien and Wheaton (2015) produced
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Figure 5. Evolutionary sequences for the low sinuosity gravel bed River Style.

a longitudinal profile depicting geomorphic controls
including landscape units (and geology), total stream
power, and sediment process zones (i.e. Figure 2). As
noted by May, Roering, Eaton, and Burnett (2013)
and May, Roering, Snow, Griswold, and Gresswell
(2017), geomorphic controls upon knickpoint develop-
ment and valley confinement relationships exert a pri-
mary control upon fish stocks, and associated fish
management issues, in this part of the world.

4.2. Geomorphic condition

Streams and rivers are dynamic entities. The propen-
sity for channel adjustment varies across River Styles.
The current geomorphic condition of each reach
reflects its capacity for adjustment, and an analysis of
river evolution (Figure 5) that considers whether the
reach has a contemporary structure and function that
is expected for that River Style (Fryirs, 2015). A
range of geomorphic indicators are used to perform
this analysis (Plate 5). Thus, reaches of the same style
can be in various states of geomorphic condition. Ana-
lyses of geomorphic condition highlight the discre-
pancy between historic and current channel
configuration and identifies potential locations for
mitigation or protection.

We assigned geomorphic condition for each reach
based on the physical indicators that informed the

condition assessment. These explanations, in conjunc-
tion with watershed maps, offer managers a resource
for more effectively identifying problem areas and
opportunities when designing a management plan
(see O’Brien & Wheaton, 2015). The MFJD Watershed
contains a range of rivers in various geomorphic con-
ditions. Plate 5 partitions the stream network into cat-
egories of intact, good, moderate, and poor geomorphic
condition. We also derived stream length metrics for
the perennial network to include the portions of sub-
watersheds hosting populations of salmonid species
(Figure 6(A) and Plate 1).

4.3. Geomorphic recovery potential

An analysis of a reach’s capacity for improvement in
geomorphic condition over a relevant time period, gen-
erally 50-100 years, serves as the primary basis for
assessing river recovery potential (Fryirs & Brierley,
2016). Key to these assessments are (1) an understand-
ing of the sensitivity to adjustment and responses to
historical impacts; (2) the landscape/watershed pos-
ition of the affected reach and its proximity to either
good or poor condition reaches (particularly those
positioned upstream); and (3) consideration of the cur-
rent (and likely future) limiting factors and pressures
that impact upon that reach. The recovery potential
of a specific reach is represented on a river recovery
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Figure 6. Combined perennial stream length data for subwatersheds of the Middle Fork John Day Watershed. (A) Geomorphic
condition data are on left hand panel and (B) recovery potential data are on the right hand panel. Note these data summarize
the perennial network, whereas stream length data summarized for the whole watershed are presented in Plates 4-7 of the atlas.

diagram that presents the current state and the pre-
dicted, potential future outcome, given different man-
agement scenarios from the ‘do-nothing’ (passive
restoration) to the ‘full intervention’ options (Figure 7).
The sum of these assessments is shown on Plate 6 and
summarized as perennial stream length data in
Figure 6(B).

Our watershed map of geomorphic recovery poten-
tial (Plate 6) suggests that, with a few exceptions, most
streams in the MFJD Watershed have a high capacity to
recover from land use pressures without intervention.
However, streams in the southeast portion of the
watershed have incurred disproportionate impacts in
a relatively delicate landscape (basic soils, sparse for-
ests, accessible terrain for multiple land uses), and
have only moderate recovery potential. Isolated reaches
of the mainstem and a few tributaries have poor
recovery potential — their geomorphic condition and
function will not improve without intervention (e.g.
Figure 6(B), Bridge Creek Unit).

4.4. Building a prioritized river management
plan

Using the results of reach types, geomorphic condition,
and recovery potential, we developed a watershed-
framed strategic plan wherein realistic goals for river
rehabilitation and restoration occurring over a time-
frame of 50-100 years are defined (see Plate 7). The
proposed plan is not a major departure from the key
management drivers (e.g. Reclamation, 2010) that are
currently operating in the MFJD Watershed. Manage-
ment objectives in our hypothetical, geomorphically
focused strategic management plan encourage conser-
vation of unique or remaining natural areas, followed
by restoration and rehabilitation efforts that support
and promote the geomorphic function (i.e. discharge
and sediment flux) of good condition reaches with
high recovery potential. Reaches in poor condition
with little recovery potential are given the lowest pri-
ority for rehabilitation or restoration.
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Figure 7. Geomorphic condition variants shown as conceptual cross sections, and their recovery potential, for the low sinuosity
gravel bed River Style. The current conditions are shown at left, and restored, rehabilitated and created conditions and potential

pathways are shown to the right.

5. Conclusions and implications

Our study presents a series of maps for the MFJD
Watershed in northeast Oregon, which help set phys-
ically realistic, geomorphic bounds on what might be
possible for managers to achieve through restoration
and conservation actions. The maps provide consistent,
watershed-wide assessments of geomorphic reach type,
condition and recovery potential to guide river restor-
ation planning and inform strategic river management
practice. The communication of findings using maps is
intuitive, simplifying outputs from quite complex geo-
morphic assessments such as O’Brien and Wheaton
(2015) and Reclamation (2008). The results corrobo-
rate previous documentation that the MFJD Watershed
has experienced significant impact through grazing
operations, road building and clear-cut logging, chan-
nel re-routing, floodplain/wetland drainage, and chan-
nel bed mining throughout the last century (NOAA,
2013; Reclamation, 2010). Fortunately, the most

damaging of these practices have since been curtailed
and the recovery potential for the watershed is very
favorable with 69% of perennial streams and 74% of
all streams showing high recovery potential. While
the maps can provide geomorphic insight that is
immediately relevant to assessments of physical habitat
for fish, they do not consider other ecological (e.g.
temperature and food availability) or socio-political
(e.g. land ownership) factors that might influence the
inherent value or recovery potential of reaches. The
preliminary strategic management map we present
here is reasonable from a physical feasibility perspec-
tive, but further modifications to reflect the values of
the various stakeholders involved in the planning pro-
cess would be necessary (O’Brien, Wheaton, &
Bouwes, 2015). In systems with a more complicated
array of impacts extending beyond just physical habitat
(Wheaton et al,, 2017), the River Styles Framework can
easily be combined with other lines of evidence, beyond



the physical environment, to inform management
decisions.

Software

Network-based analyses and their derivative maps
were processed Using Esri ArcMap™ 10.3.1.4959.
Google Earth Pro v.7.1.2.2041 was used to search and
validate our geomorphic interpretations during the
‘desktop’ phase of the study. Longitudinal profile
plots were extracted using the GME tool (Beyer,
2012). Stream length data were summarized and
plotted in Microsoft Excel, and all maps and figures
were rendered using Adobe Illustrator version CC ver-
sion 17.1.0 (64 bit).
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